The Effect of C:N Ratio Level on Water Quality Parameters and Growth of Whiteleg Shrimp (Litopenaeus vannamei) with a Non-Water Exchange Cultivation System Using Molasses as an Organic Carbon Source
PDF (English)

Cara Mengutip

Panjaitan, P. (2025). The Effect of C:N Ratio Level on Water Quality Parameters and Growth of Whiteleg Shrimp (Litopenaeus vannamei) with a Non-Water Exchange Cultivation System Using Molasses as an Organic Carbon Source. EDUCTUM: Journal Research, 4(4), 73–79. https://doi.org/10.56495/ejr.v4i4.1195

Abstrak

One of the main obstacles to development of intensive aquaculture is the accumulation of toxic inorganic nitrogen which should be kept very low by frequent water exchange or recycling of the water through a biofilter. This study describes another method of removing inorganic nitrogen using heterotrophic bacteria population of which was augmented by the addition of a carbonaceous substance, molasses, to increase the feed C:N ratio under laboratory condition. The principal aim of laboratory study was to establish correlation C:N ratio level with levels of ammonia, nitrite, dissolved oxygen, pH and shrimp growth in Penaeus monodon shrimp culture with Zero Water Exchange Model (ZWEM) using molasses as carbon resource. It was found that addition of molasses to shrimp farming with ZWEM had role in removing ammonia and nitrite. Also, application of molasses to laboratory tanks increased the growth and percentage weight gain of shrimps and increased the population of heterotrophic bacteria.

https://doi.org/10.56495/ejr.v4i4.1195
PDF (English)

Referensi

Avnimelech, Y. (1998). Minimal discharge from intensive fish ponds. Journal of the World Aquaculture Society, 29(1), 32–37.

Avnimelech, Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3-4), 227–235.

Avnimelech, Y., & Mokady, S. (1988). Protein biosynthesis in circulated fishponds. In R. S. V. Pullin, T. Bhukaswan, K. Tonguthai, & J. L. Maclean (Eds.), The Second International Symposium on Tilapia in Aquaculture (pp. 301–309).

Avnimelech, Y., Diab, S., Kochva, M., & Mokady, S. (1992). Control and utilization of inorganic nitrogen in intensive fish culture ponds. Aquaculture and Fisheries Management, 23(4), 421–430.

Avnimelech, Y., Kochva, M., & Diab, S. (1994). Development of controlled intensive aquaculture systems with a limited water exchange and adjusted carbon to nitrogen ratio. The Israel Journal of Aquaculture - Bamidgeh, 46(3), 119–131.

Avnimelech, Y., Lacher, M., Raveh, A., & Zur, O. (1981). A method for the evaluation of conditions in a fish pond sediment. Aquaculture, 23(1-4), 361–365.

Avnimelech, Y., Mokady, S., & Schroeder, G. L. (1989). Circulated ponds as efficient bioreactors for single cell protein production. The Israel Journal of Aquaculture - Bamidgeh, 41(2), 58–66.

Avnimelech, Y., Mozes, N., Diab, S., & Kochva, M. (1995). Rates of organic carbon and nitrogen degradation in intensive fish ponds. Aquaculture, 134(3-4), 211–216.

Azam, F., Fenchel, T., Field, J. G., Meyer-Reil, L. A., & Thingstad, F. (1983). The ecological role of microbes in the sea. Marine Ecology Progress Series, 10, 257–263.

Bages, M., & Sloane, L. (1981). Effects of dietary protein and starch levels on growth and survival of Penaeus monodon (Fabricius) postlarvae. Aquaculture, 25(2-3), 117–128.

Balazs, G. H. (1973). Preliminary studies on the preparation and feeding of crustacean diets. Aquaculture, 2, 369–377.

Boyd, C. E. (1995). Proceeding Special Session on Shrimp Farming. In C. L. Browdy & J. S. Hopkins (Eds.), Aquaculture (pp. 183–199). San Diego, USA.

Burford, M. A., Thompson, P. J., McIntosh, P., Bauman, R. H., & Pearson, D. C. (2003). Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. Aquaculture, 219(1-4), 393–411.

Chamberlain, G. W. (2001). Managing zero water–exchange ponds. In B. Rosenberry (Ed.), World Shrimp Farming 2001 (Vol. 14, pp. 11–18).

Csavas, I. (1994). Important factors in the success of shrimp farming. Journal of the World Aquaculture Society, 25(1), 34–56.

Findlay, R. H., King, G. M., & Watling, L. (1989). Efficacy of phospholipid analysis in determining microbial biomass in sediments. Applied and Environmental Microbiology, 55(11), 2888–2893.

Goldman, J. C., Caron, D. A., & Dennet, M. R. (1987). Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnology and Oceanography, 32(6), 1239–1252.

Gottschalk, G. (1986). Bacterial metabolism. Springer.

Hargreaves, J. A. (1998). Nitrogen biogeochemistry of aquaculture ponds. Aquaculture, 166(3-4), 181–212.

Harris, R. H., & Mitchell, R. (1973). The role of polymers in microbial aggregation. Annual Review of Microbiology, 27, 27–50.

Hoch, M. P., & Kirchman, D. L. (1995). Ammonium uptake by heterotrophic bacteria in the Delaware estuary and adjacent coastal waters. Limnology and Oceanography, 40(5), 886–897.

Hoch, M. P., Fogel, M. L., & Kirchman, D. L. (1994). Isotope fractionation during ammonium uptake by marine microbial assemblages. Geomicrobiology Journal, 12(2), 113–127.

Hopkins, J. S., DeVoe, M. R., & Holland, A. F. (1995). Environmental impacts of shrimp farming with special reference to the situation in the Continental United States. Estuaries, 18(1), 25–42.

Hopkins, J. S., Hamilton, R. D., Sandifer, P. A., Browdy, C. L., & Stokes, A. D. (1993). Effect of water exchange rates on production, water quality, effluent characteristics, and nitrogen budgets of intensive shrimp ponds. Journal of the World Aquaculture Society, 24(3), 304–320.

Johnsen, R. I., Nielsen, O. G., & Lunestad, B. T. (1993). Environmental distribution of organic waste from a marine fish farm. Aquaculture, 118(3-4), 229–244.

Jorgensen, N. O. G., Kroer, N., Coffin, R. B., Yang, X. H., & Lee, C. (1993). Dissolved free amino acids, combined amino acids, and DNA as sources of carbon and nitrogen to marine bacteria. Marine Ecology Progress Series, 98(1-2), 135–148.

Kautsky, N., Rönnbäck, P., Tedengren, M., & Troell, M. (2000). Ecosystem perspectives on management of disease in shrimp pond farming. Aquaculture, 191(1-3), 145–161.

Kirchman, D. L., Meon, B., Cottrell, M. T., Hutchins, D. A., & Weeks, D. W. B. (2000). Carbon versus iron limitation of bacterial growth in the California upwelling regime. Limnology and Oceanography, 45(8), 1681–1688.

Kochva, M., Diab, S., & Avnimelech, Y. (1994). Modelling of nitrogen transformation in intensively aerated fish ponds. Aquaculture, 120(1-2), 95–104.

Landesman, L. (1994). Negative impact of coastal aquaculture development. Journal of the World Aquaculture Society, 25, 12–17.

McIntosh, R. P. (2000). Changing paradigms in shrimp farming: III. Pond design and operation considerations. Global Aquaculture Advocate, 3, 42–44.

Middelboe, M., Borch, N. H., & Kirchman, D. L. (1995). Bacterial utilization of dissolved free amino acids, dissolved combined amino acids and ammonium in the Delaware Bay estuary: Effects of carbon and nitrogen limitation. Marine Ecology Progress Series, 128, 109–120.

Montoya, R. A., Lawrence, A. L., Grant, W. E., & Velasco, M. (2002). Simulation of inorganic nitrogen dynamics and shrimp survival in an intensive shrimp culture system. Aquaculture Research, 33, 81–94.

Moriarty, D. J. W. (1986). Bacterial productivity in ponds used for culture of penaeid prawns. Microbial Ecology, 12, 259–269.

Olah, J., Sinha, R. P., Ayyappan, S., Purushothaman, C. S., & Radheyshyam, S. (1987). Sediment consumption in tropical undrainable fish ponds. Internationale Revue der gesamten Hydrobiologie, 72, 297–305.

Parsons, T. R., Albright, L. J., Whitney, F., Wong, C. S., & Williams, M. P. J. (1981). The effect of glucose on the productivity of sea water: An experimental approach using controlled aquatic ecosystems. Marine Environmental Research, 4, 229–242.

Ritvo, G., Dixon, J. B., Lawrence, A. L., Samocha, T. M., Neill, W. H., & Speed, M. F. (1998). Accumulation of chemical elements in Texas shrimp pond soils. Journal of the World Aquaculture Society, 29, 422–430.

Rivera-Monroy, V. H., Bahamon, N., Torres, L. A., Newmar, F., & Twilley, R. R. (1999). The potential use of mangrove forest as nitrogen sinks of shrimp aquaculture pond effluents: The role of denitrification. Journal of the World Aquaculture Society, 30, 12–24.

Rosenberry, B. (2001). New shrimp farming technology: Zero-exchange, environmentally friendly, super-intensive. In World Shrimp Farming 2001 (Vol. 14, pp. 5–10). Shrimps News International.

Rosenberry, R. (1993). Production drops 16% in 1993. In World Shrimp Farming 1993. Aquaculture Digest (December), 1–19.

Schroeder, G. L. (1978). Autotrophic and heterotrophic production of microorganisms in intensely-manured fish ponds, and related fish yields. Aquaculture, 14, 303–325.

Smith, P. T. (1996). Physical and chemical characteristics of sediment from farms and mangrove habitats on the Clarence River, Australia. Aquaculture, 146, 47–83.

Smith, P. T. (1998). Effect of removing accumulated sediments on the bacteriology of ponds used to culture Penaeus monodon. Asian Fisheries Science, 10, 355–370.

Sohier, L. P., & Bianchi, M. A. G. (1985). Development of a heterotrophic bacterial community within a closed prawn aquaculture system. Microbial Ecology, 11, 353–369.

Steel, R. G. D., & Torrie, J. H. (1980). Principles and procedures of statistics: A biometrical approach (2nd ed.). McGraw-Hill.

Stuart, J., Frank, E., Coman, G. J., Jackson, C. J., & Sarah, A. G. (2009). High-intensity, zero water-exchange production of juvenile tiger shrimp, Penaeus monodon: An evaluation of artificial substrates and stocking density. Aquaculture, 293, 42–48.

Sun, Y., Zhang, S., Chen, J., & Song, J. (2001). Supplement and consumption of dissolved oxygen and their seasonal variations in shrimp pond. Marine Science Bulletin, 3, 89–96.

Tacon, A. G. J. (2001). Minimizing environmental impacts of shrimp feeds. Global Aquaculture Advocate, 4, 34–35.

Tacon, A. G. J., Cody, J. J., Conquest, L. D., Divakaran, S., Forster, I. P., & Decamp, O. E. (2002). Effect of culture system on the nutrition and growth performance of Pacific white shrimp Lipopenaeus vannamei (Boone) fed different diets. Aquaculture Nutrition, 8, 121–137.

Tezuka, Y. (1990). Bacterial regeneration of ammonium and phosphate as affected by the carbon:nitrogen:phosphorus ratio of organic substrates. Microbial Ecology, 19, 227–238.

Thakur, D. P., & Lin, C. K. (2003). Water quality and nutrient budget in closed shrimp (Penaeus monodon) culture systems. Aquacultural Engineering, 27, 159–176.

Tseng, K. F., Su, H. M., & Su, M. S. (1998). Culture of Penaeus monodon in a recirculating system. Aquaculture, 17, 138–147.

Visscher, P. T., & Duerr, E. O. (1991). Water quality and microbial dynamics in shrimp ponds receiving bagasse-based feed. Journal of the World Aquaculture Society, 22, 65–76.

Wheeler, P. A., & Kirchman, D. L. (1986). Utilization of inorganic and organic nitrogen by bacteria in marine systems. Limnology and Oceanography, 31, 998–1009.

Creative Commons License

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.

Hak Cipta (c) 2025 Pohan Panjaitan