Efficiency of Newton Polynomial Interpolation Method in Determining Stock Price Movements in a Certain Time

Main Article Content

Bungaria Tampubolon
Febry Vista Kristen Tarigan
Nurfitri Humayro Daulay
Aulia Hani

Abstract

This research evaluates the efficiency of the Newton polynomial interpolation method in predicting stock price trends from historical data. The study was conducted using Microsoft stock price data according to Nasdaq for the period 4 November to 29 November 2024. This method creates an example of a polynomial based on divided disparities to describe patterns stock price convoy. The calculation results show that Newton interpolation is able to form stock price predictions with good accuracy, for example the stock price prediction in the 20 off index is $417.05, which is close to the historical data trend. The graph obtained also illustrates the mathematical interaction between the free index and stock prices visually. However, the accuracy of predictions is largely determined by the amount and quality of data used. Therefore, Newton's interpolation can be used as a a simple and efficient analytical tool, especially when applied in conjunction with other methods to deal with the complexity of the stock market.

Article Details

How to Cite
Tampubolon, B., Tarigan, F. V. K., Daulay, N. H., & Hani, A. (2024). Efficiency of Newton Polynomial Interpolation Method in Determining Stock Price Movements in a Certain Time. Holistic Science, 4(3), 421–427. https://doi.org/10.56495/hs.v4i3.790
Section
Articles

References

Astuti, L. W. (2017). Perbandingan metode Lagrange dan metode Newton pada interpolasi polinomial dalam mengestimasi harga saham (Doctoral dissertation, Universitas Negeri Jakarta).

Barus, S. P. (2020, December). Rancang bangun aplikasi prediksi harga saham dengan tiga interpolasi melalui Restful API. Seminar Nasional Informatika (SEMNASIF), 1(1), 315–320.

Furqaansyah, Y., Gunaryati, A., & Fitri, I. (2022). Perbandingan metode interpolasi Newton dan Lagrange dengan bahasa pemrograman C++. Jurnal Teknologi Informasi dan Komunikasi, 6(3). https://doi.org/10.35870/jti

Hidayatullah, D., & Hariastuti, R. M. (2017). Interpolasi polinomial Legendre dengan metode penyelesaian polinomial Newton dan algoritma Neville. Transformasi: Jurnal Pendidikan Matematika & Matematika, 1(2).

Jankovi?, V. (2000). Divided differences (Vol. III).

Kannappan, P. L., & Sahoo, P. K. (1995). Characterization of polynomials and divided difference. Proceedings of the Indian Academy of Sciences: Mathematical Sciences, 105(3).

Nasdaq. (2024). Historical quotes. Retrieved from https://www.nasdaq.com/market-activity/quotes/historical

Nasution, M. A., Fitri, A., Rizwinie, K. S., Silaban, V. S., & Khoirani, F. (2024). Implementasi NLP dalam pembuatan chatbot customer service publisher. Jurnal Studi Kasus LARISMA: Jurnal Sains, Teknologi & Komputer, 1(1), 13–17. https://doi.org/10.56495/saintek.v1i1.451

Oktavia, I., & Genjar, K. (2018). Faktor-faktor yang memengaruhi harga saham. Seminar Nasional Manajemen dan Bisnis.

Pangruruk, F. A., & Barus, S. P. (2018). Prediksi harga saham dengan interpolasi polinom Newton Gregory maju. Prosiding Konferensi Nasional Penelitian Matematika dan Pembelajarannya, 644–650.

Suhaji. (2017). Pergerakan indeks harga saham gabungan dan faktor-faktor yang memengaruhinya. Jurnal Studi Manajemen Organisasi, 14(2).

Wahyuni, R., & Simamora, I. (2019). Penerapan metode polinom Newton Gregory maju dan polinom Newton Gregory mundur dengan metode Hamilton-Perry dalam memprediksi jumlah penduduk Sumatera Utara. Jurnal Curere, 3(2).