Analysis of Richardson Extrapolation Method in Improving the Accuracy of Numerical Approximation in Definite Integral Problems Using Matlab
Main Article Content
Abstract
Numerical methods are essential for calculating values ??that cannot be evaluated directly. Methods such as Trapezoidal and Simpson are often used to calculate integrals numerically, but the results may not always be satisfactory in terms of accuracy. This is where the Richardson extrapolation method plays an important role. This method can improve the accuracy of numerical solutions by combining the results of calculations with different levels of accuracy, thereby reducing errors. First, we use the Taylor series to approximate the exponential function around a certain point. Next, we apply the Trapezoidal method to calculate the integral value numerically. After getting the results from the Trapezoidal method, we apply the Richardson extrapolation method to improve the accuracy of the results. This method combines the results of two calculations with different levels of accuracy to reduce errors. To verify the results and improve the efficiency of the calculation, we also performed simulations using MATLAB. And the results issued in matlab are more precise results because they are very close to the exact value, with an absolute error value of 0.0000000472. and also, with a relative error value of 0.000006316. where both of these errors are very small and very close to 0. The calculation results with manual numerical approximation, the error obtained is 0.000235, while when using Richardson extrapolation, the error obtained is 0.000006316. So, it is true that if using the Richardson extrapolation method, it can reduce the error so that it will increase the accuracy of the integral solution.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Atmika, I. K. A. (2016). Metode numerik. Informatika.
Ermawati, E., Rahayu, P., & Zuhairoh, F. (2017). Perbandingan solusi numerik integral lipat dua pada fungsi aljabar dengan metode Romberg dan simulasi Monte Carlo. Jurnal MSA (Matematika dan Statistika serta Aplikasinya), 5(1), 46.
Firdaus, A., Amrullah, A., Wulandari, N. P., & Hikmah, N. (2023). Analisis efisiensi integral numerik metode Simpson 1/3 dan Simpson 3/8 menggunakan program software berbasis Pascal. Jurnal Teknologi Informatika dan Komputer, 9(2), 1051–1064. https://doi.org/10.37012/jtik.v9i2.1737
Hasan, R. R., Amrullah, A., Kertiyani, N. M. I., & Prayitno, S. (2024). Perbandingan integrasi numerik metode Simpson tiga per delapan dan Romberg menggunakan pemrograman Perl Hypertext Preprocessor. MAJAMATH: Jurnal Matematika dan Pendidikan Matematika, 7(2), 94–106.
Imani, R., Nasmirayanti, R., & Sahputra, D. E. (2023). 1/3 Simpson’s rule for analysis of structure dynamic response due to earthquake load. BAREKENG: Jurnal Ilmu Matematika dan Terapan, 17(2), 641–648. https://doi.org/10.30598/barekengvol17iss2pp0641-0648
Kurniati, A., Riyanti, & Hidayah, N. I. (2017). Metode Simpson 1/3 dan metode Simpson 3/8. Metode Simpson 1/3 dan 3/8, 4(1), 24–31.
Mulyono, Eka, M., Suryana, Pramudio, Hazizi, Sumargo, B., & Sukatmi, S. (2023). Kajian metode ekstrapolasi Richardson dan Aitken: Suatu metode untuk menghitung integral tertentu secara numerik. Jurnal Review Pendidikan dan Pengajaran, 6(4), 3300–3310. http://journal.universitaspahlawan.ac.id/index.php/jrpp
Muslim, R., Safitra, S., Lubis, R., Pebiana, F., & Putri, P. (2024). Analisis numerik gerak jatuh bebas: Penerapan metode deret Taylor dengan MATLAB. Jurnal Matematika dan Aplikasinya, 1(2), 594–599.
Pratama, F. I. (2021). Pengenalan terhadap metode numerik.
Zakaria, L., & Muharramah, U. (2023). Pengantar metode numerik: Solusi masalah dengan matematika.