Merancang Analisis Sentimen Berdasarkan Pendapat Pengguna Aplikasi Grab Dengan Menggunakan Bahasa Pemrograman Python
Cover Saintek
PDF

Keywords

Python
Sentiment Analysis
Grab

How to Cite

Nababan, D. G., Sijabat, P., Danuarta, M., & Damanik, P. (2024). Merancang Analisis Sentimen Berdasarkan Pendapat Pengguna Aplikasi Grab Dengan Menggunakan Bahasa Pemrograman Python. Jurnal Sains, Teknologi &Amp; Komputer, 1(1), 21–27. https://doi.org/10.56495/saintek.v1i1.453

Abstract

In the dynamic era of digitalization, technology-based applications have seamlessly integrated into daily life, with Grab emerging prominently in the transportation and technology services sector. This study delves into the transformative journey of Grab, providing a range of services from transportation to food delivery, all while incorporating technological efficiency and user accessibility. The imperative nature of sentiment analysis for the Grab application is highlighted to comprehend user responses and experiences. Complex factors, including service quality, technological innovation, and customer interactions, shape user sentiments. The study aims to unpack key elements influencing user perceptions and emphasizes the significance of Grab's technological advancements, adaptability, and its role in societal and environmental responsibility. A profound understanding of these factors enables a contextual and holistic sentiment analysis, crucial for formulating effective corporate strategies and enhancing overall user experiences.

https://doi.org/10.56495/saintek.v1i1.453
PDF

References

Krishnan, S., Haas, D., Franklin, M., & Wu, E. (2016). Towards reliable interactive data cleaning: a user survey and recommendations. , 9. https://doi.org/10.1145/2939502.2939511.

Lo, R., He, B., & Ounis, I. (2005). Automatically Building a Stopword List for an Information Retrieval System. J. Digit. Inf. Manag., 3, 3-8.

Muktafin, E., Kusrini, K., & Luthfi, E. T. (2020). Analisis Sentimen pada Ulasan Pembelian Produk di Marketplace Shopee Menggunakan Pendekatan Natural Language Processing. Jurnal Eksplora Informatika, 10(1), 32-42. https://doi.org/10.30864/eksplora.v10i1.390

Rozi, I. F. ., Hamdana, E. N. ., & Muhammad Balya Iqbal Alfahmi. (2018). PENGEMBANGAN APLIKASI ANALISIS SENTIMEN TWITTER MENGGUNAKAN METODE NAÏVE BAYES CLASSIFIER (Studi Kasus SAMSAT Kota Malang). Jurnal Informatika Polinema, 4(2), 149. https://doi.org/10.33795/jip.v4i2.164

Singh, J., & Gupta, V. (2017). A systematic review of text stemming techniques. Artificial Intelligence Review, 48, 157-217. https://doi.org/10.1007/s10462-016-9498-2.

Webster, J., & Kit, C. (1992). Tokenization as the Initial Phase in NLP., 1106-1110. https://doi.org/10.3115/992424.992434.