Stock Closing Price Prediction of PT Bank Central Asia Tbk (BBCA) with Long Short-Term Memory (LSTM)
Main Article Content
Abstract
Stock price volatility remains one of the key challenges for investors in making accurate investment decisions in Indonesia’s capital market. To address this issue, predictive approaches based on machine learning—such as the Long Short-Term Memory (LSTM) algorithm—are increasingly utilized due to their effectiveness in processing time series data. This study aims to develop a model for predicting the closing price of PT Bank Central Asia Tbk (BBCA) shares using the LSTM method. The dataset consists of historical daily stock prices of BBCA from 2015 to mid-2025, obtained from Yahoo Finance. The research stages include data preprocessing, normalization, sequence generation, LSTM model construction, training and validation, and performance evaluation using Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The results show that the LSTM model successfully predicted closing stock prices with high accuracy, as indicated by a very low validation loss and prediction curves that closely follow actual price trends. This suggests that LSTM has a strong generalization ability and is effective in capturing complex stock movement patterns. The novelty of this research lies in the practical implementation of LSTM for BBCA stock price prediction and its potential application in real-time decision support systems for investors.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Almasah, M. R., Aji, W., & Prabowo, E. (2025). Implementasi deep neural network untuk prediksi harga saham PT Bank Central Asia Tbk. Jurnal Riset Komputer, 12(2), 2407–389. https://doi.org/10.30865/jurikom.v12i2.8544
Fahrezi, R. A., Wijaya, M. Y., & Fitriyati, N. (2024). Prediksi harga penutupan saham Bank Central Asia: Implementasi algoritma long short-term memory dan perbandingannya dengan support vector regression. LENTERA BISNIS: Jurnal Ekonomi dan Bisnis, 5(1). https://doi.org/10.46306/lb.v5i1
Inaku, R. F., & Chandra, J. C. (2023). Implementasi data mining dalam prediksi harga saham menggunakan metode long short term memory (LSTM). Jurnal TICOM: Technology of Information and Communication, 12(1).
Pabendon, A. A. C., & Purnomo, H. D. (2023). Penerapan algoritma Apriori dan FP-Growth untuk market basket analysis pada data transaksi non-promo. Jurnal Media Informatika Budidarma, 7(3), 975. https://doi.org/10.30865/mib.v7i3.6153
Rizkilloh, M. F., & Widiyanesti, S. (2022). Prediksi harga cryptocurrency menggunakan algoritma long short term memory (LSTM). Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 6(1), 25–31. https://doi.org/10.29207/resti.v6i1.3630
Sutisna, T., Raharja, A. R., Hariyadi, E., & Putra, V. H. C. (2024). Penggunaan computer vision untuk menghitung jumlah kendaraan dengan menggunakan metode SSD (Single Shot Detector). INNOVATIVE: Journal of Social Science Research, 4, 6060–6067.
Wathani, M. N., Kusrini, K., & Kusnawi, K. (2023). Prediksi tren pergerakan harga saham PT Bank Central Asia Tbk dengan menggunakan algoritma long short term memory (LSTM). Infotek: Jurnal Informatika dan Teknologi, 6(2), 502–512. https://doi.org/10.29408/jit.v6i2.19824