Development of Deep Learning Model Based on Convolutional Neural Network (CNN) for Brain Tumor Classification Using MRI Images

Main Article Content

May Rani Tabitha Sinaga
Bungaria Tampubolon
Nurfitri Humayro Daulay
Dinie Triana
Aulia Hani
Ferdyanto Abangan Simanjuntak
Arnita Arnita

Abstract

Brain tumor classification using MRI images presents a critical challenge in medical radiology. This study develops a deep learning model based on Convolutional Neural Network (CNN) to classify brain MRI images into four categories: Normal, Glioma, Meningioma, and Pituitary. A publicly available dataset from Kaggle consisting of 20,672 images was used, with preprocessing and data augmentation applied. The model architecture includes convolutional, pooling, flatten, dense, and dropout layers, optimized using the Adam optimizer and categorical crossentropy loss function. The evaluation results show that the model achieved an overall accuracy of 96% with high f1-scores across all classes, particularly for the Pituitary class (0.98). The main contribution of this study lies in the integration of diverse data augmentation techniques and Explainable AI (XAI) methods, enabling the visualization of key areas in MRI images that support classification decisions. The proposed model is not only accurate but also demonstrates strong generalization and interpretability, making it a promising tool for clinical decision support systems in brain tumor diagnosis.

Article Details

Section
Articles

References

Amalia, K., Magdalena, R., & Saidah, S. (2022). Klasifikasi penyakit tumor otak pada citra MRI menggunakan metode CNN. e-Proceeding Engineering, 8(6), 3247–3254.

Andre, R., Wahyu, B., & Purbaningtyas, R. (2021). Klasifikasi tumor otak menggunakan convolutional neural network dengan arsitektur EfficientNet-B3. Jurnal JUST IT, 11(3), 55–59. https://jurnal.umj.ac.id/index.php/just-it/index

Anhar, A., & Putra, R. A. (2023). Perancangan dan implementasi self-checkout system pada toko ritel menggunakan convolutional neural network (CNN). ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 11(2), 466. https://doi.org/10.26760/elkomika.v11i2.466

Díaz-Pernas, F. J., Martínez-Zarzuela, M., González-Ortega, D., & Antón-Rodríguez, M. (2021). A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network. Healthcare, 9(2). https://doi.org/10.3390/healthcare9020153

Fadlia, N., & Kosasih, R. (2019). Klasifikasi jenis kendaraan menggunakan metode convolutional neural network (CNN). Jurnal Ilmiah Teknologi dan Rekayasa, 24(3), 207–215. https://doi.org/10.35760/tr.2019.v24i3.2397

Harahap, F. A. A., Nafisa, A. N., Purba, E. N. D. B., & Putri, N. A. (2023). Implementasi algoritma convolutional neural network arsitektur model MobileNetV2 dalam klasifikasi penyakit tumor otak Glioma, Pituitary dan Meningioma. Jurnal Teknologi Informasi, Komputer, dan Aplikasi (JTIKA), 5(1), 53–61. https://doi.org/10.29303/jtika.v5i1.234

Husen, D. (2024). Klasifikasi citra MRI tumor otak menggunakan metode convolutional neural network. bit-Tech, 7(1), 143–152. https://doi.org/10.32877/bt.v7i1.1576

Lizard, D., Dimara, S., Putri, S. W., & Amelia, R. (2023). Penerapan convolutional neural network (CNN) dalam klasifikasi citra MRI untuk deteksi tumor otak manusia. Jurnal Kernel, 4(2), 70–77. https://doi.org/10.31284/j.kernel.2023.v4i2.6960

Mandle, A. K., Sahu, S. P., & Gupta, G. P. (2022). CNN-based deep learning technique for the brain tumor identification and classification in MRI images. International Journal of Software Science and Computational Intelligence, 14(1), 1–20. https://doi.org/10.4018/ijssci.304438

Misbullah, A., Mursyida, W., Farsiah, L., & Sukiakhy, K. M. (2024). Analisis performa segmentasi citra MRI tumor otak dengan arsitektur U-Net., 2(2), 83–95.

Noor Santi, C. (2011). Mengubah citra berwarna menjadi grayscale dan citra biner Rina. Teknologi Informasi DINAMIK, 16(1), 14–19.

Safrizal, M., & Harjoko, A. (2014). Perbandingan pewarnaan citra grayscale menggunakan metode K-Means Clustering dan Agglomerative Hierarchical Clustering. Berita MIPA, 23, 255–263. https://media.neliti.com/media/publications/242368-perbandingan-pewarnaan-citra-grayscale-m-bee66374.pdf

Septipalan, M. L., Hibrizi, M. S., Latifah, N., Lina, R., & Bimantoro, F. (2024). Klasifikasi tumor otak menggunakan CNN dengan arsitektur ResNet50. Seminar Nasional Teknologi dan Sains, 3(1), 103–108. https://doi.org/10.29407/stains.v3i1.4357

Supiyani, I., & Arifin, N. (2022). Identifikasi nomor rumah pada citra digital menggunakan neural network. Methodika: Jurnal Teknik Informatika dan Sistem Informasi, 8(1), 18–21. https://doi.org/10.46880/mtk.v8i1.921