Analysis of the Most Dominant Causing Factors of Divorce in 34 Provinces in Indonesia Using the XGBoost Algorithm
Main Article Content
Abstract
Divorce in Indonesia shows a significant increasing trend and has a broad social impact. This study aims to identify the most dominant causes of divorce in 34 provinces in Indonesia using the Extreme Gradient Boosting (XGBoost) machine learning algorithm. Secondary quantitative data from the Central Bureau of Statistics in 2024 were analyzed by pre-processing, data sharing, model training, and performance evaluation. The results showed that constant disputes and quarrels were the main causes of divorce, followed by substance abuse and forced marriage. The developed XGBoost model achieved 75% accuracy in classifying the level of divorce risk. These findings provide new insights into understanding the social factors that influence divorce and can be the basis for designing more effective prevention strategies.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Badan Pusat Statistik. (2024). Jumlah perceraian menurut provinsi dan faktor penyebab perceraian (perkara). BPS Indonesia. https://bps.go.id/
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785
Dangeti, P. (2017). Statistics for machine learning: Build supervised, unsupervised, and reinforcement learning models using both Python and R. Packt Publishing Ltd.
Dariyo, A. (2004). Memahami psikologi perceraian dalam kehidupan keluarga (Vol. 2, Issue 2).
Dava Maulana, M., Hadiana, A. I., & Umbara, R. (2023). Algoritma XGBoost untuk klasifikasi kualitas air minum. Jurnal Mahasiswa Teknik Informatika, 7(5). https://www.kaggle.com/datasets/adityak
Fitri, I. S. (2022). Faktor penyebab tingginya angka cerai gugat di Pengadilan Agama Bandung. Al-Ahwal Al-Syakhsiyyah: Jurnal Hukum Keluarga dan Peradilan Islam, 3(1), 101–116. https://doi.org/10.15575/as.v3i1.17547
Hidayati, L. (2021). Fenomena tingginya angka perceraian di Indonesia antara pandemi dan solusi. Jurnal Psikologi Sosial, 3(1), 71–87.
Jihaan Fauziyah Rahman, & Fahmi Fatwa Rosyadi Satria Hamdani. (2024). Faktor-faktor penyebab tingginya angka perceraian di Kabupaten Purwakarta tahun 2021–2023. Jurnal Riset Hukum Keluarga Islam, 4(2), 97–104. https://doi.org/10.29313/jrhki.v4i2.5192
Jo, T. (2021). Machine learning foundations. Springer Nature Switzerland AG.
Lundberg, S. M., Allen, P. G., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30, 4765–4774. https://github.com/slundberg/shap
Olson, D. H., & DeFrain, J. (2003). Marriage and family: Intimacy, diversity, and strengths (4th ed.). McGraw-Hill.
Pengadilan Agama Bangkinang. (2024). Faktor penyebab perceraian di Kabupaten Kampar. Direktorat Jenderal Badan Peradilan Agama. https://badilag.mahkamahagung.go.id
Roihan, A., Abas Sunarya, P., & Rafika, A. S. (2019). Pemanfaatan machine learning dalam berbagai bidang: Review paper. Indonesian Journal on Computer and Information Technology, 5(1), 1–12.
Syafriani Manna, N., Doriza, S., & Oktaviani, M. (2021). Cerai gugat: Telaah penyebab perceraian pada keluarga di Indonesia. Sosiologi Hukum, 6(1), 1–15. https://doi.org/10.36722/sh.v6i1.443
Zheng, H., Yuan, J., & Chen, L. (2017). Short-term load forecasting using EMD-LSTM neural networks with a XGBoost algorithm for feature importance evaluation. Energies, 10(8), 1118. https://doi.org/10.3390/en10081118