Comparison of Cox Proportional Hazards and Weibull Regression Models in Survival Analysis of Heart Failure Patients Using UCI Repository Data

Main Article Content

Ardicha Appu Sianturi
Risca Octaviyani Hutapea
May Rani Tabitha Sinaga

Abstract

Heart failure is a leading cause of death worldwide, with a high mortality rate due to decreased heart function and systemic complications. Survival analysis is used to understand factors that influence patient survival and estimate the risk of death based on clinical characteristics. This study aims to analyze factors that influence survival time in heart failure patients and compare the performance of the Cox Proportional Hazards (CoxPH) model with the Weibull Accelerated Failure Time (AFT) in predicting the risk of death. Data are from the Heart Failure Clinical Records Dataset (UCI Repository) which includes 299 patients with variables such as age, anemia, hypertension, serum creatinine levels, and ejection fraction. The analysis was performed using the Kaplan–Meier, CoxPH, and Weibull AFT methods with evaluation through AIC and C-index values. The results show that age, anemia, hypertension, and creatinine increase the risk of death, while ejection fraction is protective. The CoxPH model performed better (AIC 958.46; C-index 0.741) than the Weibull AFT (AIC 1282.24; C-index 0.259). Therefore, CoxPH is recommended for estimating relative risk between patients, while Weibull AFT is more suitable for estimating absolute survival duration.

Article Details

Section
Articles

References

Alya, R., Mukhti, T. O., Wahyuni, S., Barokah, B. M., & Apriyerni, A. (2025). Survival analysis of heart failure patients using the Cox proportional hazard model and Weibull regression. UNP Journal of Statistics and Data Science, 3(2), 147-156. https://doi.org/10.24036/ujsds/vol3-iss2/351

Ashine, T., Muleta, G., & Tadesse, K. (2021). Assessing survival time of heart failure patients using a Bayesian approach. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00537-4

Cavalcante, T., Ospina, R., Leiva, V., Cabezas, X., & Martin-Barreiro, C. (2023). Weibull regression and machine learning survival models: Methodology, comparison, and application to biomedical data related to cardiac surgery. Biology, 12(3). https://doi.org/10.3390/biology12030442

Couissi, A., Haboub, M., Hamady, S., Ettachfini, T., & Habbal, R. (2024). Predictors of mortality in heart failure patients with reduced or mildly reduced ejection fraction: The CASABLANCA HF study. Egyptian Heart Journal, 76(1). https://doi.org/10.1186/s43044-024-00436-y

Damayanti, S., Wuryandari, T., & Sudarno, S. (2024). Perbandingan analisis survival menggunakan regresi Cox proportional hazard dan regresi Weibull pada pasien COVID-19 di RSUD Taman Husada Bontang. Jurnal Gaussian, 12(3), 453–464. https://doi.org/10.14710/j.gauss.12.3.453-464

Georgousopoulou, E. N., Pitsavos, C., Yannakoulia, C. M., & Panagiotakos, D. B. (2015). Comparisons between survival models in predicting cardiovascular disease events: Application in the ATTICA study (2002–2012). Journal of Statistics Applications & Probability, 4(2), 203. https://doi.org/10.12785/jsap/040202

Giolo, S. R., Krieger, J. E., Mansur, A. J., & Pereira, A. C. (2012). Survival analysis of patients with heart failure: Implications of time-varying regression effects in modeling mortality. PLoS ONE, 7(6). https://doi.org/10.1371/journal.pone.0037392

Habibi, D., Rafiei, M., Chehrei, A., Shayan, Z., & Tafaqodi, S. (2018). Comparison of survival models for analyzing prognostic factors in gastric cancer patients. Asian Pacific Journal of Cancer Prevention, 19(3), 749–753. https://doi.org/10.22034/APJCP.2018.19.3.749

Hamid, A. L. P., Subanti, S., & Susanti, Y. (2022). Analisis faktor yang berpengaruh terhadap waktu survival pasien penyakit ginjal kronis menggunakan uji asumsi proportional hazard. Indonesian Journal of Applied Statistics, 5(1), 12. https://doi.org/10.13057/ijas.v5i1.48121

Hasan, I. K., Pakaya, W. A., Achmad, N., & Isa, D. R. (2021). Analisis survival menggunakan regresi Weibull pada laju kesembuhan pasien tuberkulosis paru di RSUD Aloei Saboe Kota Gorontalo. Euler: Jurnal Ilmiah Matematika, Sains dan Teknologi, 9(1), 40–51. https://doi.org/10.34312/euler.v9i1.10758

Kaindal, S., & Venkataramana, B. (2025). A comparative analysis of parametric survival models and machine learning methods in breast cancer prognosis. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-15696-0

Lee, S., Kim, H., Lee, H., Hahn, J., & Chang, M. J. (2025). Time-to-event modeling for survival prediction of osimertinib as the first- and second-line therapy. Journal of Clinical Medicine, 14(12). https://doi.org/10.3390/jcm14124077

Li, X., Marcus, D., Russell, J., Aboagye, E. O., Ellis, L. B., Sheeka, A., Park, W. H. E., Bharwani, N., Ghaem-Maghami, S., & Rockall, A. G. (2024). Weibull parametric model for survival analysis in women with endometrial cancer using clinical and T2-weighted MRI radiomic features. BMC Medical Research Methodology, 24(1). https://doi.org/10.1186/s12874-024-02234-1

Lukitasari, D., Setiawan, A., & Sasangko, L. R. (2015). Bayesian Survival Analysis Untuk Mengestimasi Parameter Model Weibull-Regression Pada Kasus Ketahanan Hidup Pasien Penderita Jantung Koroner. d'Cartesian, 4(1), 26-33. https://doi.org/10.35799/dc.4.1.2015.7531

Montaseri, M., Rezaei, M., Khayati, A., Mostafaei, S., & Taheri, M. (2025). Survival parametric modeling for patients with heart failure based on kernel learning. BMC Medical Research Methodology, 25(1). https://doi.org/10.1186/s12874-024-02455-4

Moreno-Sánchez, P. A. (2023). Improvement of a prediction model for heart failure survival through explainable artificial intelligence. Frontiers in Cardiovascular Medicine, 10. https://doi.org/10.3389/fcvm.2023.1219586

Mumbulu, E. T., Nkodila, A. N., Saint-Joy, V., Moussinga, N., Makulo, J. R. R., & Buila, N. B. (2024). Survival and predictors of mortality in patients with heart failure in the cardiology department of the Center Hospitalier Basse Terre in Guadeloupe: Historical cohort study. BMC Cardiovascular Disorders, 24(1). https://doi.org/10.1186/s12872-024-04268-1

Plana, D., Fell, G., Alexander, B. M., Palmer, A. C., & Sorger, P. K. (2022). Cancer patient survival can be parametrized to improve trial precision and reveal time-dependent therapeutic effects. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-28410-9

Putri, E. D., Mukhti, T. O., Annisa, R., Putri, A., & Nasywa, S. (2025). Mortality trends in heart failure patients: A study using Cox regression models. UNP Journal of Statistics and Data Science, 3(2), 180-188. https://doi.org/10.24036/ujsds/vol3-iss2/359

Sarumpaet, A. N., Wuryandari, T., & Sudarno, S. (2024). Penerapan model Weibull proportional hazard dan regresi Cox proportional hazard pada kondisi financial distress. Jurnal Gaussian, 13(2), 450–461. https://doi.org/10.14710/j.gauss.13.2.450-461

Soraya, N., Nasution, Y. N., & Wahyuningsih, S. (2018). Model Cox proportional hazard pada kejadian bersama (ties) dengan metode Breslow (studi kasus: Pasien rawat inap demam berdarah dengue di Rumah Sakit Dirgahayu Samarinda periode Juli 2016 s.d Juni 2017). Eksponensial, 9(1), 95-104.

Voeltz, D., Hoyer, A., Forkel, A., Schwandt, A., & Kuß, O. (2024). A parametric additive hazard model for time-to-event analysis. BMC Medical Research Methodology, 24(1). https://doi.org/10.1186/s12874-024-02180-y

Yanti, H., & Purnamasari, I. (2022). Prosiding Seminar Nasional Matematika, Statistika, dan Aplikasinya (Terbitan II).

Zakiah, S., Ramadhani, E., & Safitri, R. (2024). Cox proportional hazard regression model in analysis of factors affecting survival time (case study: Lung cancer patients at RSUDZA Aceh). Transcendent Journal of Mathematics and Application, 3(1). https://doi.org/10.24815/tjoma.v3i1.38761